Frequency and Phase Modulation

Sharlene Katz James Flynn

Overview

- History
- Why FM? Noise problems with linear modulation systems: AM/SSB/DSB
- Definitions: Deviation, WBFM, NBFM
- Very popular for VHF voice

Definition of an FM Signal

For a baseband signal, x(t):

$$x_{FM}(t) = A_c \cos \left[2\pi f_c t + 2\pi k_f \int_{-\infty}^t x(\tau) d\tau \right]$$

- k_f is the frequency deviation constant in Hz/volt
- A constant envelope signal with varying frequency/phase
- The instantaneous frequency is:

$$f_i(t) = f_c + k_f x(t)$$

- Maximum frequency deviation = $\Delta f = k_f |x(t)|_{max}$

FM Signal - Time Domain

For a pulse train baseband signal:

FM Signal - Time Domain

For a sinusoidal baseband signal:

FM Signal – Frequency Domain

 For a 1 KHz sinusoidal baseband signal (tone modulation) and 10 KHz carrier

Deviation and Bandwidth

- Instantaneous Frequency: f_c + k_fx(t)
- Frequency deviation: $\Delta f = k_f x(t)$
- Maximum frequency deviation, Δf = k_f|x(t)|_{max}
 - For tone modulation: $\Delta f = k_f A_m$
- Deviation Ratio, $D = \Delta f/W$
 - For tone modulation: Modulation index, $b = Df/f_m$
 - − b << 1: narrowband FM, NBFM</p>
 - b >> 1: wideband FM, WBFM
- Bandwidth, BW = 2(D+1)W, or BW = $2(b+1)f_m$

- Spectrum vs. modulation index, β
 - Spectra have a typical trapezoidal shape in linear frequency and amplitude in decibels.

Comparison to AM/SSB/DSB

	AM	DSB	SSB	FM
BANDWIDTH	2 f _m	2 f _m	f _m	2 (β+1)f _m
SNR	LINEAR	LINEAR	LINEAR	NON- LINEAR
EFFICIENCY	33%	50%	100%	≤ 100%*
COMPLEXITY	LOW	MODERATE	MODERATE	HIGH

• Threshold Effect

 Capture effect: Signals more than 6dB down will not interfere.

SDR Program for NBFM

TRANSMIT PATH (always running)

RECEIVE PATH (always running)

Definition of a PM Signal

For a baseband signal, x(t):

$$x_{PM}(t) = A_c \cos[2\pi f_c t + k_p x(t)]$$

- $-k_p$ is the frequency deviation constant in rad/volt
- A constant envelope signal with varying frequency/phase
- The instantaneous phase is:

$$\theta_i(t) = 2\pi f_c t + k_p x(t)$$

– The instantaneous frequency is:

$$f_i(t) = f_c + \frac{k_p}{2\pi} \frac{dx(t)}{dt}$$

PM Signal - Time Domain

For a pulse train baseband signal:

PM Signal - Time Domain

For a sinusoidal baseband signal:

PM Signal – Frequency Domain

 For a 1 KHz sinusoidal baseband signal (tone modulation) and 10 KHz carrier

Bandwidth Comparison for FM/PM

- Bandwidth, BW = 2(D+1)W, or BW = $2(b+1)f_m$
- FM:
 - For tone modulation: Modulation index, $b = Df/f_m$
 - $BW = 2(k_f A_m + f_m)$
- PM:
 - For tone modulation: Modulation index, $b = k_p A_m$
 - $BW = 2(k_p A_m + 1)f_m$
- Increasing frequency has a more profound effect on the BW of PM